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D E T E R M I N I N G  T H E  S T R A I N  F E A T U R E S  O F  R O C K  J O I N T S  

L. A. Nazarov and E. N. Sher UDC 539.3+622.83 

It is generally recognized that a rock mass has a block structure [1] and that the contacts between blocks largely govern 

the behavior of the mass as a whole. Dynamic effects cannot be related solely to failure in the block material [1] and in the 

main there is rearrangement of  the block system without block failure. An adequate description of  strain in a rock mass and 

in the Earth's crust as a whole makes it extremely important to determine the characteristics of the block contacts. 

The model for a block contact is an element of zero thickness whose force characteristics (tangential stress 7" and normal 

stress o) and strain characteristics (shearing R and approach P between the faces) are related by equations of  state: 

as proposed in [2]. One specifies the forms of T and S from laboratory experiments with specimens extracted from the mass, 

with the results then used to describe actual movements. A fairly detailed bibliography on this has been given in [3]. 

Basic contact features used in simulating the strain are the tangential rigidity K t and the normal rigidity K n, which are 

the coefficients of proportionality between the increments in the force and strain characteristics. 

Various indirect methods such as [4, 5] are used when one cannot determine K t and K n by direct experiment, which 

are based on failure geometry and the properties of the constituent rocks. 

The developed working system in a pit field provides in principle access to certain failure areas, while well-developed 

field measurement methods provide point values for the components of the stress tensor. The latter on the [6] basis can be 

interpolated to the failure points themselves. It appears favorable to organize a stationary acoustic-measurement point to 

determine not only the instantaneous strain characteristics but also the stress tendency around the area. 

Here we propose a method of determining failure rigidities under real conditions, which is based on combining 

experiment with theory. 
1. Determining Tangential  Rigidity of  a Contact Area when the Ends  Are Accessible. A tester for examining block 

contacts [7] was used in an experiment whose scheme is shown in Fig. 1. Between the two lucite blocks B 1 and B 2 there were 

thin layers of various materials, and the entire system was subject to a horizontal stress F. Simultaneously, at each loading step, 

the contact was irradiated by the pulsed sound source S, whose signals were recorded by the sensors 1 and 2 (accelerometers). 

The length t o of  the probe signal was chosen such that the wave reflected from the boundaries AB and CD did not distort the 

signal at the sensors for a time t o. 

Figure 2 shows the results (velocigrams for ~, as referred to the maximum value of  '~' at the point of  loading, with the 

solid lines for sensor 1 and the dashed lines for sensor 2) for various loading steps ~ = F/F o (F 0 the initial value). As the 

normal load increases, there is a reduction in the amplitude of the first onset A 1 at the sensor 1 closer to the source, while there 

is an increase in the amplitude A 2 and this in the ratio ~b = A2/A 1, with reduction in ~, (t 2 - -  q)/t  o (t i is the time of the 

maximum in the first arrival in the velocigram for sensor i, i = 1, 2). 

The tangential rigidity of the contact was determined at each loading step in the x direction by rigid block displacement 

with measurement of  the slope and the tangential stress, from which we calculated K t. The dashed lines in Fig. 3 show ~b and 

~p in relation to the dimensionless rigidity I~ t = Kth/(pV2 ) (p and Vp are the density of lucite and the speed of push waves in 

it, while h is the contact length, Fig. 1) as derived from the experimental data. 
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The experiment scheme was examined theoretically on a planar model in an (x, y) cartesian coordinate system. The 

working region consisted of  two elastic subregions having a common boundary (Fig. 1). The following conditions were set at 

the horizontal boundaries: 

= r - X o ) f ( t ) H ( t  o - t), • = 0 at y = 0; (1.1) 

o" ---- r ---- 0 - a t  y ---- h. (1 .2)  

Here o x, oy, and Zxy are components of  the stress tensor, 5 is a Dirac delta function, and H a Heaviside function; arbitrary 

homogeneous conditions apply at the vertical boundaries x = 0 and x = x . ,  while the stresses are continuous on the contact 

line x = x c and the displacements are discontinuous: 

% = % = K e ,  e = u - ~ ,  % = % = ~ R ,  R = ,~ - 7~ (1.3) 

(the quantities with overbars apply to the right-hand subregion). Boundary conditions (1.3) simulate the contact interaction for 

a linear dependence of  the stresses on the relative displacements or the instantaneous situation if T and S are nonlinear. 

Equations from the dynamic theory of  elasticity apply in each subregion: 

aau a'u a2w a2u 

02w 02 u o2 w 

Here u and w are the displacements along x and y, while k and t~ are Lame parameters, p density, and t time. 

System (1.1)-(1.4) was solved numerically by means of  standard approximations providing the second order of 

accuracy. The only feature was linking up the solutions at x = x c. There were no stresses at the horizontal boundaries near 

the joint, so it was possible to obtain uncoupled linear-equation systems for P and R, which were solved by the three-point 

method. The dimensional parameters were k + 2/~, p, and h, while the properties of the material in the subregions were 

identical. We chose x o and x e such that the waves reflected from the side boundaries did not affect the signal at the points (x i, 

h) corresponding to the sensors. 

Calculations for the parameters corresponding to experiment (x o = x t = 0.9, x 2 = 1.1, x c = t o = 1) confirmed the 

conclusions and showed that changes in K t have very little effect on the behavior of u, and the same for K n as regards w, so 

properly oriented sensors enable one to trace the behavior of the joint in different directions. 

The solid lines in Fig. 3 show the theoretical ff(I~t) and ~o(Kt), which fit experiment well. If  the signal reception points 

lie directly at the edges of  the contact (x 1 = x 2 = xc), then ff --, 1 and ~o -)  0 for K t --, oo, i .e. ,  the contact behaves as a 

continuous medium in one direction with increase in the corresponding rigidity. 

The tangential rigidity may thus be determined as follows under field conditions. The theoretically calculated functions 

are ff(Kt), ~o(Kt), I~ t = Kt/p, p = (k + 2/~)/m, while m is the distance between source and detector (length of  the joint section). 

The measurement point is arranged in accordance with Fig. 1 and one obtains the acoustic data (~b 0 and ~o 0, Fig. 3). Then the 

tangential rigidity of the working part is given by K t = P~k-l(ff0) or K t = p~o- 1(~,0); the first is preferable because of  the better 

resolution. 

The experiments and calculations suggest 
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g t  -~- g~t o. O' + a '  (1.5) 

as relating the tangential rigidity and the normal stress at the contact. The two unknown parameters K t and t~ are determined 

from two time-separated measurements on the static stresses er = tr i and acoustic quantities ~b = ~b i (the latter gives I~ r) after 

which one solves the system 

t = 1 , 2 .  

The second experiment may be replaced by a hypothesis (which in principle is confirmed qualitatively by these studies): for 

normal stresses close to the compressive strength er = er e, the joint behaves as a continuous medium having K t =/x/e  (e is the 

visible contact thickness). One solves (1.5) for er (a = a K _---'f_--~-f), to get a formula enabling one to make long-time obser- 

vations on a by the acoustic method. 
Formula (1.5) gives a qualitatively good description of the [8] experiments. A formula proposed in [9] for the tangential 

rigidity is 

K = An, (1.6) 

in which A is determined by direct shearing experiment. Instead, one can derive A = K~t/a o by our method: acoustic 

measurements give K a = K 0, and field measurements give er = er0- Formula (1.6) follows from (1.5) or low stresses (~ > >  

o). 
2. Examining Rigidity Features of  Joints with One-Sided Access. Access is not always available to the two ends 

of a joint (for example, when global faults emerge on the Earth's surface), so we consider a scheme for irradiating the contact 

with one-sided access. A vertical force is applied at the surface of the elastic region containing the joint displacement line (Fig. 

1). At points on the surface on the two sides of the contact Ci(xi, 0) (i -- 1, 2), one records the vertical accelerations ~r 

the horizontal ones ii. One needs to derive the signal parameters corresponding to change in contact rigidity. The task is handled 

by means of a difference scheme similar to that in Section 1 but with the difference that x 0 = 0 and the lower boundary is 

eliminated. Calculations show that even at comparatively short distances from the joint (towards the source), the strain 

parameters do not influence the sensor readings, and that sensor can be used as the base one (i.e., the other data are normalized 

with respect to its readings). 

Figure 4 shows 

= ,,,axlli(x2,0,01/ ,o, t2 < t < t o + 

w ( L ,  =  xl x ,0,01/ o, < t < to + t:, 

in which t 2 is the time of  arrival of the perturbation at point C2, and fro is the maximum vertical acceleration at the point x 1 

= 0.7xc; x 2 = 1.3Xc; I~ t = Kt/q; I( n = Kn/q; q = (X + 2/~)/x e. 

125 



TABLE 1 

Points in Fig. 1 ;~ ;; 

C 1 

C 2 

0,363 0,25 
0,0225 0,033 
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Fig. 4 

Analysis shows that for any pair of values U = U o and W = W o one can quite accurately recover the corresponding 

values of  I(~ I( ~ so it is in principle possible to estimate K t and K a under field conditions. Irradiation in the Fig. 1 schemes 

is required, and then the data from the sensors at point C 2 are normalized from the readings of the vertical sensor at point C 1, 

which gives U o and W o. Then U(K t, Kn), W(I( t, I(n) are calculated theoretically from these, and from U o and W o one derives 

the dimensionless rigidities I( ~ I( ~ The dimensional quantities are determined after the physical properties of the medium have 

been defined: K ~ = qI( ~ K ~ = qI( ~ 

This approach was used to process the data from a model experiment on the properties of  a joint layer with one-sided 

access. 

The experiments were performed on a rectangular lucite plate 1 x 1.5 • 0.02 m. There was a weakened layer along 

the median line of  the large dimension formed by five rows of holes 10 mm in diameter with distances between centers of 12 

nun, which simulated the block contact. The layer was irradiated by waves excited by impact on the face at the point x o (Fig. 

1). At points C z and C 2 there were the detectors (accelerometer), which had p = x c - -  x o = 0.33 m, x c - -  x z = x 2 - -  x c = 

0.1 m. These recorded the vertical and horizontal accelerations of  the free surface. The largest acceleration amplitudes occurred 

with Rayleigh waves, and they were recorded in the processing. The plate geometry allowed us to make the necessary 

recordings before the arrival of  reflected signals from the other faces. 

Table 1 gives the mean values of  the relative maximum acceleration amplitudes found by recording a series of impacts. 

The relative accelerations at point C 2 gave U 0 = 0.13, W o = 0.09, and Fig. 4 gives the dimensionless rigidities I( ~ = 0.6, 

I( ~ = 1 in the weakened layer, where the dimensional values were as follows: 

= 0,6(a + ~ ) / p ,  ~ = (a + 2 ~ ) / p .  

Dynamic measurements gave E = 5.4 x 109 Pa and v = 0.32 for lucite (Young's modulus and Poisson's ratio), whence X 

= 3.64 x 109 Pa and/x = 2.05 • 109 Pa. With these data and p = 0.33 m we have 

/~, -- 14,1 �9 109 Pa/m, / ~  = 23,4 �9 109 Pa/m. 

One can estimate the strain features of  the weakened layer if one averages the elastic moduli over the medium 

containing holes. In our layer, the ratio of the area occupied by the solid medium to the total of the world medium with holes 

was s = 0.45. With layer thickness b = 0.06 m, 
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K = s / ~ / b  = 1 5 , 5  �9 l0 s Pa/m, K -- sE/b = 4 1  �9 1 0 9  Pa/m. 

The calculated rigidities for the weakened layer were close to the experimental ones. 
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